Cardiology knowledge free ECG feature extraction using generalized tensor rank one discriminant analysis

نویسندگان

  • Kai Huang
  • Liqing Zhang
چکیده

Applications based on electrocardiogram (ECG) signal feature extraction and classification are of major importance to the autodiagnosis of heart diseases. Most studies on ECG classification methods have targeted only 1or 2-lead ECG signals. This limitation results from the unavailability of real clinical 12-lead ECG data, which would help train the classification models. In this study, we propose a new tensor-based scheme, which is motivated by the lack of effective feature extraction methods for direct tensor data input. In this scheme, an ECG signal is represented by third-order tensors in the spatial-spectral-temporal domain after using short-time Fourier transform on the raw ECG data. To overcome the limitations of tensor rank one discriminant analysis (TR1DA) inherited from linear discriminant analysis, we introduced a generalized tensor rank one discriminant analysis (GTR1DA). This approach involves considering the distribution of the data points near the classification boundary to calculate better projection tensors. The experimental results showed that the proposed method achieves greater classification accuracy than other vectorand tensor-based methods. Finally, GTR1DA features a better convergence property than the original TR1DA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Low-Rank Tensor Learning with Discriminant Analysis for Action Classification and Image Recovery

Tensor completion is an important topic in the area of image processing and computer vision research, which is generally built on extraction of the intrinsic structure of the tensor data. Drawing on this fact, action classification, relying heavily on the extracted features of high-dimensional tensors, may indeed benefit from tensor completion techniques. In this paper, we propose a low-rank te...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Matrix Rank Reduction for

Numerical techniques for data analysis and feature extraction are discussed using the framework of matrix rank reduction. The singular value decomposition (SVD) and its properties are reviewed, and the relation to Latent Semantic Indexing (LSI) and Principal Component Analysis (PCA) is described. Methods that approximate the SVD are reviewed. A few basic methods for linear regression, in partic...

متن کامل

Tensor decompositions for feature extraction and classification of high dimensional datasets

Feature extraction and selection are key factors in model reduction, classification and pattern recognition problems. This is especially important for input data with large dimensions such as brain recording or multiview images, where appropriate feature extraction is a prerequisite to classification. To ensure that the reduced dataset contains maximum information about input data we propose al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014